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The elastic stability of circular eylindrical shells subject to
either axial compression or pure bending is investigated for the
case of cylinders strengthened by internal pressure. Nonlinear
finite deflection theory is employed and an approximate solution
of the equilibrium and compatibility equations is obtained by
use of Galerkin’s method. Comparatively simple expressions are
presented for the various buckling stresses and these expressions
gre evaluated to yield buckling stresses as a function of the in-
ternal pressure. The critical stress for bending is found to be
greater than that in axial compression, and in approximately the
ratio indieated by recent experimental evidence.
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Elastic instability of pressurized cylindrical shells under

compression or bending.

Nomenclature

D Flexural rigidity E¢3/12(1 —v?)

E Young’s modulus

F Airy stress function

R Radius of middle surface of shell

m, n Number of waves in axial and circumferential
directions respectively

p Internal pressure

t Wall thickness of shell

w Radial deflection

x, s Co-ordinates of a point in the middle surface of
the shell, measured in the longitudinal and
circumferential directions respectively.

a R/tm?

n b3/m

n n2/m?

v Poisson’s ratio, v = 0.3 in present study

q’).fbb Dimensionless stress parameters

0,0,,0, Axial compressive stresses

v? ILaplace operator

T4 (V?)?

Subscripts:

b Bending

cr Critical condition

) No Pressure

! The present investigation was sponsored by the National Aero-
nautics and Space Administration under Research Grant N3G-16-59.
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Introduction

The postbuckling behavior of cylindrical shells subject
to axial compression has been studied by several
investigators. Donnell [1] first derived the governing
finite-deflection equations; later, in 1941, these
equations were used by von K4&rmdn and Tsien [2] to
obtain an approximate solution to the problem of buckling
of an axially compressed cylinder into a diamond shaped
buckle pattern. Further investigation was made by
Kempner [3] who used an additional parameter in the
buckling deflection function proposed in [2). Several
variations of these analyses have been proposed by other
investigators.

The increase in stability of internally pressurized
cylindrical shells subject to axisymme tric loading was
studied by Lo, Crate, and Schwartz [4]. They used large-
deflection theory and found that the critical stress
increases from a value of 0.37 Et/R at zero pressure to
0.606 Et/R (i.e., the value given by classical small
deflection theory) as the pressure increases to
0.2 Et?/R?. Very recently, the effect of internal
pressurization on stability of axially compressed cylin-
ders was studied by Thielemann [5]. In addition to
presenting a finite deflection theory, he also conducted
tests on aluminum shells. All the aforementioned
analytical solutions were obtained on the basis of the
energy criterion.

Seide (8] has receatly presented a linear small deflec-
tion analysis of the buckling of cylindrical shells subject
to pure bending. This study indicated that, contrary to
the commonly accepted value, the maximum critical



bending stress is for all practical purposes equal to the
This result,
based upon small deflection theory, does not offer any

critical stress found for axial compression.

explanation of the experimental differences known to
exist for these two situations. For example, experimental
evidence due to Suer, Harris, Skene, and Benjamin [9)
indicates buckling loads in bending to be from 25 to 60
per cent greater than in compression, the exact value
depending upon the ratio R/t.

This report is a study of the elastic postbuckling be-
havior of thin pressurized cylinders subject to bending
loads. Throughout this analysis, the Galerkin method is
employed. For comparison with certain existing results
obtained by using the energy method, a solution for
shells subject to axisymmetric compression is reached
first. For this case, when the pressure parameter
pR?2/Et? approaches unity, it is found that the solution
is the same as the classical small-deflection solution.

The relation of the critical stress to internal pressure
has been found. For this purpose it is convenient to
introduce as a parameter the ratio between the increment
of critical stress and the critical stress at zero pressure.
This parameter will be essentially independent of the
imperfections in the shell when the imperfections do not
vary significantly due to changes in pressure. Finally,
experimental data due to Suer, Harris, Skene, and
Benjamin [9] are compared with the results of the present
analysis.

Basic Equations and Deflection Function

For an initially perfect thin cylindrical shell the com-
patibility and equilibrium equations can be expressed,
respectively, as

. 02w ¥ 9*w d*w 1 Jdw
v F—E[<axas> - angs—z—ﬁ ax?-}o (1)
porgt ZE_[PE P s
R dx? ds? 9x* dxds dxds Jx? ds?
+p=0 (2)

In the above equations, F is the Airy stress function of
the membrane stresses, w is the radial deflection, ¢ the
shell thickness, R the radius of the middle surface, and
p is internal pressure (taken to be positive).

An approximate form of the deflection pattem is
assumed:

w=>b +cos‘7<2 sz cos—cos-—-’-e+b

2ns

bs cos —k— 3)

2mx

R

3 cos +

0 for a shell subject to axial compression
where k= 1 1 for a shell subject to eccentric compres-
sion or pure bending

Y = even integer
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and m and 7 represent the number of waves in the axial
and circumferential directions respectively, the number
of waves in the axial direction being within a length
equal to the circumference of the cylinder. Throughout
the present study, y = 2. For more localized buckling, a
larger value of y could be used. When k =0, (3) is the
same as that used in [2]. In (3), b is not an independent
parameter but is used to satisfy the condition of
periodicity of circumferential displacement [3].
Corresponding to (3), an expression for the stress
function F is proposed

o s 1pR
F=--Xtg? +o, R cos—+—p—xz a cos-nfcosig
2 R 2 " R R
2mx 2ns 2mx 2ns
+a,,cos cos—— +a_ cos——+a__ coS~—— (4

20 R 02 R

The stresses o_ and o, are due to axial compression and
bending, respectively, and are positive for compression.
For shells subject to axisymmetric compression only,

o, =0 and 9, is replaced by o to avoid any possible
confusion in notation.

Method of Solution

When w and F in (3) and (4) are substituted in (1) and
(2), the equalities generally will not hold. They can,
however, be expressed instead as

V‘F-ER azw>z 9w w1 azw]_ 0 ©
Oxds dx? ds2 Rax2J
and
szw__t ﬁ—z[azpﬁlf)_ gff I*w azF 9*w ]
R 0x2 ds? Ox? dxds Jxds axz ds?
+p=0, (6)

An approximate solution is obtained by minimizing ¢,
and (, on the right-hand sides of the above equations;
this is done by the Galerkin method.

The Galerkin method establishes the following set of
equations:

J f Q, cos— cos?ds dx =0
L 27R
2 2
f f Q'cos ”;: cos?nsds dx =0
() ()
L 2mR
2mx
f j Q'COS__Rdexzo
() ()
L 2mR s
f f Q|cos? ds dx =0
° °

)




L 27R
f f e ™ cos il cos z(ks )d dx=0 ‘
cos — — —)ds dx =
A A 2 R R 2R z

(8)

fL IZWRQ 2mx 2ns) 2<ks dsd OS
+ cos —— fidd -

) ) , (cos R 2 cos oR sdx

Again, k = 0 when the shell is subject to axial
compression only. In the following sections, solutions
are obtained for axial compression and bending separately,
although the approaches are the same.

Axisymmetric Compression

In this section, the parameter k& in (3) and (8) and also
0, in (4) are zero. Also, o in (4) is replaced by 0. The
coefficients a0, ao2,811,and a,; appearing in (4) can
be expressed in terms of b, and by through the four
integrals of (7). The relations are found to be

Qoo 1 [l(bz>z ]
—_ |2 4na?
E¢? 16[ 2\e /) T

g2 1 (bz)z
Ee2 32\t

Gy a b ©)
G22 pn*a®

Es? o (1+p)?

In the above expressions, the dimensionless parameters
are defined so that

2
n
= (10

H=—

a =—1— .-—R— (11)
m? ¢t
b

n=— (12)
ta

The ratio n/m evidently represents the wave-length ratio
in axial/circumferential directions.

The integration of (8) together with the relations given
in (9) leads to the following two equations:

ag= (1+#)z + - i l]
12(1 =v3) (l+y)z—[(l+u)2+2 a

16 L+p2/b,\
(1+#)="2"2%“z + (—t—%) (13)

l+y.2 1 4#2 2l 2 2#2
= S0 let + S
3(1-v3) L4 (Q+p) 1+p)

1 1 1 13 bz 2
- [2 Q+p?” 32];&—) (14

The function ¢ on the left-hand sides of the above

+

ag

equations is a nondimensional stress parameter defined
by the relation

oR pR?
¢= Et # E¢? (15)
For brevity, (13) and (14) may be rewritten as:
2) 2 bz \?
ap=dy+(ty+dgnedyn?)a® + 4, (22) (13)
2),.2 Be bz Y
a¢p=B,+(B,+B¢n?)a® + (B5 +——>(—t— (14a)
1
where
(e
"T12(1-02)
1
2T (w2
8 1]
Ay =— il |
? [u+p2+z .
1 2
4, =
Q+p)2
2
Ay = l+p
16 (16)
1+p?
'T3(1-0v?)
1
B, -+
2
B, -
(1+p?
2
85 = 2#
(L+p)?
1 1
Bg=-|—ow 4 —
* [2(1 w2 32]”
The parameter (b2 /t) is eliminated between (13a) and
(14a) and the stress parameter ¢ is expressed as
- C, 4
bp=—T1CrAza an
In the above equation,
A B
7 BB
c - 1
1 B (18)
A —By— s
n



2 (19)
B
A5 — 85 -
Ui
As can be seen from (15) to (19) the dimensionless spect to « and 5. To find the dimensionless critical
variable oR/FEt is a function of a, 7, and . The stress O, at a given value of dimensionless pressure p,
buckling stress is thus obtained through minimization several different values of y are tried in (25) together
with respect to the parameters a, 77, and p. Differentiation  with corresponding values of P from Table 1 until the
of ¢ with respect to a is carried out first to obtain right-hand side of (25) is minimized. The value of u, at
i do which o O, is minimum and equals G, is called pc,.
iyl (20) Some values of G and per for various values of p are
a given in Table 2.
for p = constant. Thus from (17):
A TABLE 2
, ,
. 4 @) 7 - 0.00 005 |01 |02 |04 |06 |08
and finally from (17) with a given by (21) fep = 1.15 | 1.10 | 1.08 |1.04 | 0.76 | 0.45 | 0.24 | 0.08
by = WE A4 VT G (22) ., = 0.161| 0.176 | 0.227 | 0.283 | 0.37 | 0.481 | 0.56 | 0.6
The notation ¢, thus denotes the value of ¢» minimized It can be seen that ., decreases with increasing p. This
with respect to a. The expressions for Cy and C; are indicates that the buckling wave becomes longer in the
found from (18), (19), and (16). From (16): circumferential direction when the pressure increases.
1 The relation between G_ and p is shown in Fig. 1 as
(*J)a =v G G, 371'_;;; (22a) Curve II. The results from (4] and [5] and the test data

from [6] and [7] are plotted in this figure also. The
It should be noted that VI/3(1—?) is the classical co- broken curve shown there represents the curve best
efficient from small-deflection theory for an unpressurized fitting the data in [5], [6], and [7]. The predictions of

shell. When v=0.3, y1/3{I1—=v? =0.606. The the present theory are shown as Curvell in Fig. 2 so as
minimization of ¢ with respect to 7 and p is most easily to afford a comparison with experimental data given in
obtained by numerical, or, rather, by graphic means. This [9].

is done by plotting ¢¢ in (22a) against n for each given In Fig. 1, the broken curve indicates that g, is only
value of u. The minimum ¢4 found from each of these about 0.09 at p = 0, and G, increases from 0.09 to
curves is called ¢q, 5, which should be equivalent to the approximately 0.35, then levels off at higher values of
value found from the relation d¢pq /9y = 0. Table 1 gives p. However, 3. is expected to reach the classical value
some of the numerical relations obtained in the course of of 0.606 when the value of p is relatively high. One of
this procedure. the most probable causes of the lower result indicated

by the broken curve corresponding to test data liesin

TABLE ] . . . - . . .
: , initial imperfections which in general increase with
# =0 0.2 0.25 0.5 1.0 115 increasing R/t. 1f the imperfection factor does not vary
7 = 0.59 | 0.53 0.325| 0.18 | 0.11 significantly due to the change of p, then the ratio of
Pa,n = 0.605 0.44 0.406 0.29 0.19 0.161 ., at two different pressures will be nearly independent
of the effect of imperfections. l.et 0cr,o represent Ocr at
Let us introduce the following dimensionless 50, and
parameters R NG, =5y — Fero
g = E—t (23) The ratio, \0./ 0,, . is plotted against p in Fig. 3. As
and shown in this figure, the predictions of the present theory
R2 are in reasonably good agreement with experimental
F—E—— (24) evidence, which is re-plotted from the broken curve of
Ee? Fig. 1. One advantage of introducing the ratio
Then (15) may be rewritten as ABcr / Oer,o is that the relation in Fig. 3 can be used
3 = +up (25) having test data at only one pressure to predict the
a7 ®am critical stress in the same imperfect shell at any other
where aa,n represents the minimized value of o with re- pressure. For instance, a test is made at p = 0.4, for
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zero
0 | I 1 ]
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FIGURE 1. POSTBUCKLING BEHAVIOR OF AXIALLY COMPRESSED LR;
PRESSURIZED CYLINDRICAL SHELLS. Et
which value G, is found experimentally to be 0.29. where py, a, and 7 are given by (10), (11), and (12),
From Fig. 3, the present analysis gives A6, /Ger,0 = respectively.
2.02. Therefore, it can be predicted that 4 = 0.096, From (8) and (26),
0.221, and 0.356 at p = 0, 0.2, and 0.8, respectively, 1 1 +p)? 1 1 1
while the mean test data from Fig. 1 shows that apy = 2 + Tom? (l +3p +-2-—z + l+m)?
G =0.09,0.25, and 0.34 at =0, 0.2, and 0.8, aA-v9L 8 m m (Q+p
respectively. - 1 1 5
pectively but—g Su+— | [576x%+108 L +—;—l
Eccentric Compression, Pure Bending 2m m m- m 21 2
s . . . - z ¥ n 2 1NG
Then a cylindrical shell is subject either to pure L (1+p) 8 64 (1+p)
bending or eccentrically applied compression k& in (3) and ~ , 6p 1
(8) is unity. The solution in this case is analogous to 9+ +—+—, 1 1 bon2
the solution of the previous section. The coefficients of + mn —_— (_z (27)
the Airy stress function F are found to be | 256 m* 512(1+p)? t
1 1 1
G 1 2 3 1 bz \2 a =——-[l+ 2+ (l+3 +-‘—)]
Ec 167 _(1_6 #- mmz)(T) P2=ga sy (1) v (e s

= —

Et?  256p \ ¢

144p? +—+ —
+[—1 +{ = 2m qz] a?
o [1- (o ) ") > e (28)

%oz 3 bz>z

2

ay 4m t : 2 i 5 1 1
= 576" +108 — +— 12p+— Bp+—;
E¢? 2(1+p)? { # m? m* [ " mz+ " mz] 1}(”2)z
2 + —_ — —-—
. (6# +_1_2)772az L1 ] (_b_z_) 512 (1 +40)2 32(1+w? 128 p\¢
’_222= - 2m 16m : The stress parameters ¢y and ¢, are defined by the re-
Ee 16 (1+ p)? lations
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R 30R 1 1 z
Et 2 Et 2 m2/ Et?
s oR 3 R 1 A 1 \ pR? *)
I — — — e, — +
2 Et 2 E 2<F 2m2) Et?

The experiments of Suer, Harris, Skene, and Benjamin
[9] indicate that shells subject to compression or bending
will buckle into a multiple wave pattern in the logitudinal
direction. Numerical results from the present analysis
also indicate that m has a magnitude greater than 10
when R/t is greater than 500. These calculations are too
lengthy to present, but for example: At p = 0.48 and
R/t = 1,000, it was found that 1/m? = 0.00204, which is
much less than unity. The value of a is usually in the
neighborhood of unity; hence, from (11) m? varies

//
/

x?
£e?

0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIGURE 3. PREDICTIONS OF PRESENT THEORY AND TEST DATA
FOR AXIALLY COMPRESSED PRESSURIZED CYLINDRICAL

approximately as R/t. In the present analysis we are SHELLS
concerned only with extremely thin shells; hence this
ratio is large. Therefore, for practical purposes 1/m? and
and 1/m* are negligible compared to unity. Thus, 1+p? 1 op?
2 a(f!) = >t + 7]2 a?
o,R 30R 3 pR b7 o(1—v® L4 41 +p?
By= by =y 2y 2 P (30) :
Et 2Et 2 Et 9 2 1 1 9300 /b2
2 D R — —ﬁ<—2> (32)
ap, 1 a+9®y 1 _#[ 6 +i]n 8 (1+pw2 | 8(1+w? 128y \\¢
b a-v® 8 }(1 +p)? (1+p)?* 8 For brevity, (31) and (32) may be rewritten as:
o L, 9+p?® sba? - - - -, — (b2
+ (1+#)2 Y) s a 256 ( ; ) (31) 095b=‘4|+(.4z+‘437]+r14’7 )a2+A5 <t_) (31a)
1.0 = o
: ° ° I o A
o —— /
/ S — e ———
)/ - q
e —
0.1 p— \ v
— ~_./ Results of present theory
B Test data, Ref.[9] 1 — «qJ-z (C-Tb + 3 a-c)cr
| © Bending
e I T Y- G
compression - *
— I — Y= (T
L Lt [ Ll | 1 1iLild )
0.01 0.1 1.0 10.0 pR
FIGURE 2. POSTBUCKLING BEHAVIOR OF PRESSURIZED Etz

CYLINDRICAL SHELLS suU
COMPRESSION.

BJECT TO BENDING OR AXIAL
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and where (#,)  is the value of ¢, minimized with respect to a.

ba For classical small deflection theory, n=0; hence, C, =C, =
agy, =B, +(82+B47I Ja? +(Bs+ ) (32a) 1 and the expression y/1/2(1-v?) is the coeffxcxent for
miNt this theory. When »=0.3, \/1/2(1—v?) = 0.74.

h
where , Analogous to the solution in the case of axisymmetric
1. - _Ef_li)__ compression, the minimization of ¢} with respect to y and
! 8(1 -1 7 is done graphically. First, ((;Sb)a versus 7 is plotted
_ ) for various values of u. The minimum (¢b)a found from
_ , each of these curves is called (¢b)a,17' Table 3 gives
(1+p some of the numerical relations obtained in the course
- 6 3 of this procedure.
e,
(1+p* 8 TABLE 3
i 92 m =0 [ o025 0.5 1.0 115
Tz ) = 0.66 0.46 0.23 0.15
- 9(1+4® (p,) _ =0.74 0.52 0.34 0.21 0.195
Ag = ——— (33 b
256
_ 142 Let us introduce the following dimensionless parameters
B, = ——
' 2(1 =v? 5 =‘71,R
n =_1. b Et
2 4 and (38)
- 9 _ o.R
_—— g =
a0 ep? -y
1 9u? Thus, from (30)
8 =TT N4
8(1+p? 3
(a + a) (quan 2;1p (39)
E 3 3 a, 3
&~ [8(1 +p)? * 128 H To find the dimensionless critical stress (Eb +— Ec)a
Further, at a given value of dimensionless pressure p, several dif-
As — - Bs ferent values of p are tried in (39), together with
~ 4, By - Bs T corresponding values of (¢3), . from Table 3 until the
C, = = right-hand side of (39) is mmlmxzed
As - By =2 The value of p at which ((71, + §'3,;> a.n 18 minimum
Y) 2 » Tl
As = = Ay~ Bs Ay~ Ay - Ag - A -
3 3 6 3 4 s 4
- B —Bs — ~ o-—"(— 5+Z e>71+<2 B4—~Bs>’lz
Cz _ 2 Y 2 _ 2 2 2 (34)
- - B,
A s — B g - T
" and equals (Ob += ac) is called p_ . Table 4 indicates
The snmultaniou_s solution of (31a) and (32a) leads to some numerical relatnons in terms of the pressure.
Cy Ay =~ <
é, = + C A; a (35) TABLE 4
a
. P =0 0.025/0.05 |0.1 0.2 [0.4 |0.6 |0.8
fes =1.14 [1.1 [1.04 [0.86 |0.63|0.34 |0.14 |0.02
G +35,) or =02 |0.249(0.24 0365 0.48(0.64 |0.73 (0.734
(36) (0", = 0.133]0.1660.196| 0.243{ 0.320.426{ 0.487| 0.489
and finally from (35) with a given by (36) It can be seen that p., decreases with increasing p. In

the above table, (7,*_stands for the value of (G.) _ when

P == [— = 1 cr cr
((’)b)a =2V AL VGG =V GG |/2 (1 -v?) (37) o) » 0. The relations between((?b +§ 3c>cr and p as

2
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LT, ~ 38

'bb * 38 er o
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0.2 0.4 0.6 0.8 1.6 i

FIGURE 4. INCREMENT OF CRITICAL STRESS AS A FUNCTION OF
PRESSURE FOR CYLINDRICAL SHELLS SUBJECT TO ECCENTRIC
COMPRESSION OR PURE BENDING.

well as (G.)* and p p are shown in Fig. 2, in which the
data from [9]C is shown also.

The broken curve shown there bounds test data
obtained by Suer, Harris, Skene, and Benjamin [9] for
axial compression. Bending test data due to these same
authors is shown by individual points in Fig. 2.

_ 3_ >
- = 40)
(”b*z %) o (

Let us introduce the notation

Az, +25) (5,35
bzccr bzccr

where (3,}4-%5 cro represents the value of <Eb ; C) -
A(ob-#; >

at p = 0. The ratio is plotted against p.

- 3 _
<0b +§ 0C> cro
in Fig. 4. Again, this ratio should predict the critical
stress in an imperfect shell from test data at only one
pressure.

It has been observed that generally @)*

is not
c cr

equal to the value of 7 found for axisymmetric
compression. The difference is dueto the deflection
patterns employed. Curves Il and Il of Fig. 2 indicate
the effect on axial compression of those different
patterns and show that even a slight eccentricity in
application of load will greatly reduce the buckling

stress. (o )

o Versus p is shown in Fig. 1 as Curve IV,

Discussion and Conclusions

It can be observed that i = 0 in the case of ring
buckling and further, b3 = 7 = 0 in the case of small de-
flections. If either i or b3 is zero, the above analysis
reducesto a small deflection solution.

The ratio between stresses, <0b +3 Uc> CI_/om, is

approximately 1.25 and vilries only slightly with pressure.

Therefore, the ratio ——< js 0.833. The procedure

acr
indicated can be employed when test data at one
pressure are available to predict the critical stress in
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the same imperfect shell at any other pressure. Since
more consistent test results can be expected from shells
under higher pressures. Figs. 3 and 4 are available to
predict the buckling stresses when at least one test has
been made on some moderately pressurized cylinders.
For instance, if the critical pure bending stress,

(Ob R/Et), hasbeen found experimentally as 0.53 at

p = 0.4, then from Fig. 4 one can find (o,R/Et)  =0.163,
and 0.603 at p = 0, and 0.8, respectively. This evaluation
is applied only to shells having the same ratio R/t. The
effects due to a change of R/t will be discussed in a
later paper.

The predictions of the present theory for pressurized
axially compressed cylindrical shells are in substantial
agreement with test data for a rather wide range of values
of internal pressure. Predictions of the theory for
pressurized cylindrical shells in pure bending are in
reasonable agreement with experimental evidence for
dimensionless internal pressures in excess of 0.1 but are
conservative for smaller values of internal pressure.
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